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1 Summaries

1.1 Executive Summary

CatFish is a state-of-the-art Bayesian Intelligence (BI) model for multi-dimensional demand

forecasting, business decision support and simulation, and supply-chain optimization in big

data industrial contexts. CatFish is based on a categorical variable multiplicative Poisson

economic model, which offers functionality that Artificial Intelligence (AI) models cannot:

• Bayesian Intelligence: Leverage expert priors and incorporate information from

outside AI or econometric models to conduct what-if scenarios or assert beliefs about

the future. Catfish can provide inferences without the panel data required to train an

AI and generate forecasts that exhibit mean-reversion, include not-seen-before trend

breaks, or follow other models’ trends.

• Millions of interpretable, multi-dimensional categorical variables: Unlike

black box AI-based models, this white box economic model lets you understand the de-

terminants of your demand; and every meaningful factor adds to the model’s predictive

power! CatFish can use any categorical variable and any number of dimensions. So, you

are no longer limited to just time-varying characteristics like seasonality, availability

and promotions as factors. Unleash the power of contextual information inherent in re-

gionalized socio-economic data and demand shocks, like zip5-grain income or weather,

to forecast in the locations and characteristics that matter for your supply-chain.

• Full joint predictive distributions: Full distributions, not point forecasts, are

needed for almost every sophisticated business decision. You need full joint distri-

butions to do dynamic optimization, recover demand fluctuation probabilities for risk

analysis, or allocate products to locations with different or varying critical ratios.

• Aggregably consistent petabyte-scale forecasts: Coherent strategic, operations,

and financial decision-making require consistent forecasts at every level of aggregation

enterprise-wide. Whether you know your aggregate demand’s time trend or want to

forecast it, CatFish can properly allocate it across every dimension and grain.
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• Superior accuracy and calibration: CatFish gets better the more meaningful vari-

ables you add, and you can include outside forecasts, so it can quickly achieve better

accuracy than most other models. It natively produces count distributions calibrated

to your demand’s characteristics.

More information on CatFish is available from these resources:

• Webpage: https://www.petabyteeconomics.com/catfish.html

• Brochure: https://www.petabyteeconomics.com/files/CatFish-Brochure.pdf

• GitHub: https://github.com/petabyteeconomics/CatFish

1.2 Technical Summary

CatFish currently comprises a base model, an extension, and two samplers. Both samplers

have “autotailor” methods for automatic warm-up and thinning in production environments

where manual supervision is inappropriate.

The base model is primarily cross-sectional and produces full-distribution mixed-Poisson

ensembles. For inference we use a Markov chain Monte Carlo (MCMC) Gibbs sampler, which

guarantees ergodicity and places no constraints on the model’s topology.1.

The model defines a space as the cartesian product of each dimension. A location, E,

is a point in that space, such as a date-product-zipcode triplet. The Poisson rate, λ, that

applies to location E is then the product of the effect, θc, of all categorical variables c ∈ CE
that pertain to E.

p(uE|λE) ∼ Pois(λE) where λE =
∏
c∈CE

θc (1)

The categorical variables can also be percentiles (e.g., deciles) of continuous variables and

binary indicators. One dimension of the model is usually time, and then there are typically

categories for days, certain holidays2, quarters, years, or other time-based groupings. A mix

1Using such an MCMC sampler is appropriate in experimental and research and development con-
texts. However, samplers that restrict topologies and other inference approaches, including machine-learning
solvers, can be much more efficient once the optimum topology has been determined.

2See, for example, https://docs.aws.amazon.com/forecast/latest/dg/holidays.html.
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of Poisson rates then provides distributions of levels at each time grain. CatFish’s cross-

sectional approach to time is competitive with most time-series models.3 However, users can

include pre-determined global growth trends, product life cycle effects, and other time-series

constructs in the model.

An extension adds hierarchical priors to CatFish so that it can “learn about the urn”

and produce mixed negative binomial ensembles.4 The extended model uses a Metropolis-

within-Gibbs sampler and adds random walks with drift, as well as other functionality.

2 Economic Theory

2.1 Dimensions and Space

The model supports any number of dimensions with labels of any datatype. Commonly used

dimensions include product, geography, and time, but clients can include anything on which

they have data for demand.

The space of the model, E, is the cartesian product of d ∈ {1, . . . , D} orthogonal dimen-

sion vectors. These dimensions have label vectors, ld, and vectors of indices, ed. For each

dimension, the two vectors are columns of a table that maps l↔ e, named l2e.

The space contains the model’s data, u. This data can include observations (i.e., training

data) and outcomes (forecast values), which may cover partially disjoint areas, particularly

when using historical data to forecast the future. So, it is convenient to store vectors of

‘training’ flags, td, to indicate the space’s nature for each dimension as a third column in

the l2e table.

E can be an D-dimension matrix indexed by coordinates (e1, . . . , eD) or a unidimensional

‘linear’ vector. In linear vector notation, uE is the data at location E. The training flags

demark the training space, ET , and forecast space, EF , of the model.

3In testing, model averaging CatFish with time-series models often greatly enhances accuracy, and Cat-
Fish can also use other models for time trends.

4Poisson-based models are prone to under-dispersion, as the mean of the distribution is equal to its
variance. Using mixed negative binomials addresses this issue.
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2.2 Bayesian Model

From equation 1, the Poisson rate λ for some outcome u is the product of categorical vari-

ables, θC , that bear upon that outcome. Let θc be the parameter value an indicator variable

takes if category c applies, and let the vector of parameter values of the other orthogonal

indicator variables c̃ 6= c ∈ C be denoted θC̃ . Then, the vector of rates, λ where θc applies

is given by:

λ =
∏
θC = θc ·

∏
c̃ 6=c

θC̃ = θc ·
λ

θc
(2)

Putting equation 2 into equation 1, and using u to denote the vector of outcomes where

θc applies, the joint sampling distribution for θc is then:

p(u|θc) = θ
∑

u
c e−θc·

∑ λ
θc · c(u) for u ∈ Z≥0 (3)

When the sampling distribution is Poisson, the conjugate prior distribution for the pa-

rameter is gamma. Accordingly, the prior for each θc is given by:

p(θc) ∼ gamma(θc, α, β) =
βα

Γ(α)
θα−1c e−βθc for α, β > 0 (4)

where α is the shape paramater and β is the rate parameter.5,6

The (conditional) posterior distribution (of θc given u and θC̃) is given by Bayes’ rule

from the sampling distribution in equation 3 and the prior in equation 4:

p(θc|u,θC̃) =
(
θ(α+

∑
u)−1

c e−θc(β+
λ
θc

)
)
· c(u, α, β) (5)

∼ gamma(α +
∑

u, β +
∑ λ

θc
) (6)

Note that p(u), the probability of observing the sample that pertains to θc, does not

depend on the value of θc and so c(u, α, β) is a normalizing constant.

5Most software, including MATLAB, use an inverse rate parameter, referred to as a scale parameter.
6The gamma distribution has mean α

β and variance α
β2 .
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2.3 Markov Chain Monte Carlo Sampler

The model’s parameters can be inferred using a Markov chain Monte Carlo approach. We

compute M Markov chains in parallel. The inference procedure for each Markov chain is as

follows:

1. Initialize the Markov chain: Draw each θi from a Gamma distribution using its priors,

θc = gamma(α, β)

2. Gibbs sample from the conditional posterior: For each θc in turn, compute
∑

u from

the data and
∑
θc̃ using the most recently inferred values, then draw θc = gamma(α+∑

u, β +
∑
θc̃).

3. Iterate: repeat (2) for R steps.7

Then, once every chain is complete:

4. Post-process: Remove warm-up iterations and, if necessary, thin out the remaining

steps to eliminate any remaining serial correlation. Add new iterations so that there

are R×M samples for every parameter.

The total of observed data about θc,
∑

u, does not change across iterations and can

be pre-computed. However, the sum of the current inferred values of conditioning factors,∑
θc̃, (and so the inferred Poisson parameters and predicted mean values, λ) do change from

iteration to iteration. Calculating this “sum of the lambdas” is the primary computational

expense in computing the model.

2.4 Categorical Variables and Sampling Blocks

The fundamental factors, or ‘features’ in machine learning parlance, inferred by the model

are coefficients for indicator variables. For sampling efficiency, we organize factors into

mutually exclusive categories with values c ∈ C so that together the categories constitute

a categorical variable, C, and a sampling block, b ∈ 1, . . . , B. Because the categories are

mutually exclusive within each sampling block, they are not conditioned on each other. Put

7The software provides an option to iterate each of the R steps until a convergence criteria is achieved,
or a maximum of S times, to eliminate serial correlation.
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another way, two factors c and c′ can belong to the same block b if the parts of λ affected

by c are disjoint from those affected by c′. For example, a sampling block might have a

categorical variable to describe calendar months c ∈ {1, . . . , 12}, and each observation would

belong to only one month. Equation (2) is then:

λ =
∏

b∈B,c∈C

θb,c (7)

We can then perform stage 2 in the inference procedure – computing the sum of the

lambdas and drawing from the gamma distribution – for an entire block simultaneously, as a

“block update”, using vectors of values. To do this requires three large vectors, each with a

maximum length |E|, as well various other (comparatively immaterially small) vectors. The

three large vectors are λ, and two vectors that together map E to the elements of C: EC→E,

which contains values of E, and CC→E, which contains values of C.

Denoting θb as the vector of thetas that belong to block b, λ(EC→E) as the subvector of

lambda that is affected by C, and θb(CC→E) as the projection of b’s thetas into E-space, the

first two steps of the inference procedure are then:

1. Initialize each chain. Draw θ and compute λ:

(a) Draw each θb,c from the gamma distribution using its priors, putting the results

in θ.

(b) Set λ to a vector of ones of length |E|.

(c) For each b, update the appropriate part of lambda: λ(EC→E) = λ(EC→E) �
θb(CC→E).

2. Perform a step for a chain. For each block, b, in turn:

(a) Calculate
∑
θ−b: sum λ(EC→E) over the distinct c found in CC→E, and Hadamard

divide the resulting vector by θb.

(b) Store the old thetas for b, denoted θb̃.

(c) Compute vectors of α and β using the priors, the sum of observed data influenced

by the block (i.e.,
∑

u(EC→E)), and
∑
θ−b.
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(d) Draw a vector of new thetas for block b from the Gamma distribution using α

and β, and update θ.

(e) Update the lambda vector: λ(EC→E) = λ(EC→E)� θb(CC→E)� θb̃(CC→E)

For a Lambda-in-Memory (LIM) sampler design, the three large block-update vectors

must be held concurrently in memory. Single precision and TensorFloat-32 encoded numbers

use 4 bytes, so the memory requirement to perform a LIM block update is at least 12 · |E|
bytes. (The memory footprint of other vectors is immaterial when the data is much bigger

than the number of inferred factors.) Available GPUs and EC2 instances currently have 40Gb

and 1Tb of memory, respectively. Accordingly, the maximum size of the model computed

with a LIM block-update sampler is around 1×1010 using GPUs and 2.5×1012 using CPUs.8

Eight Markov chains can be run in parallel as 8-GPU EC2 instances and clusters of nodes

are readily available.

2.5 Partitions, Topology, and Grain

A partition divides up a space made up of one or more dimensions, {d}, into vectors of

category values c{d}, using vectors of dimensional labels {ld}. (The dimensional labels are

mapped into indices, ed, using the dimensional vectors.) For example, a single-dimension

partition that divides up the first dimension would have a vector of category values c1 and

a vector of labels l1; and a two-dimension partition that divides up the first and third

dimensions would have a vector of category values c1,3 and two vectors of labels {l1, l3}.
There are two special types of one-dimensional partitions:

• A degenerate partition has the same category value (typically 1) for every index of a

dimension: cd = 1 ∀ed ∈ ed

• A complete partition has a unique category value (typically the same as the index

value) for every index of a dimension: cd = ed ∀ed ∈ ed

A block’s categorical variable C is the cartesian product of category values from partitions

covering all of the model’s dimensions: C =×D

d=1
{cd}. Usually, modelers specify partitions

8For models inferring daily demand into America’s 41,690 zip codes based on five years of data, other
dimensions can have a length-product up to about 130 and 3,300, respectively.
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to cover some dimension(s) and then complete the block’s specification using degenerate

partitions for the other dimension(s).

A block is ‘normalized’ if its categories do not cover the entire training space ET of the

model. Inferred parameters are identified for normalized blocks, with the ‘omitted factor’

corresponding to the uncoded space having a parameter value equal to one. Inferred param-

eters for unnormalized blocks provide relative effects (i.e., the magnitude of c
c′

is identified).

For example, consider a block for a quarter-of-the-year factor in a two-dimensional

product-time model. This block would be encoded using a degenerate partition in the prod-

uct dimension, c1 = {1}, and have values c2 = {1, 2, 3, 4} in sequence across the entire time

dimension. The categorical variable would then be C = c1 × c2 = {1, 2, 3, 4}, and the cor-

responding vector of category values would be, say, C = (1, 2, 3, 4, . . .). As |C| = |ET |, the

block would not be normalized. It could be normalized by omitting the encoding for, say,

Q1.

Users may wish to construct variables based on overlapping factors. In such cases, the

variable must use multiple blocks. Recall that categories must be mutually exclusive within

blocks; each category must pertain to disjoint parts of the space and different lambdas.9 A

leading example would be to create growth variables, where one factor applies to all time,

the second to all but the first period, and so on, with many factors multiplied to produce

the effect of the last period. Such a variable and its interpretation must then span as many

blocks as there are periods to ensure disjointness.

The collection of disjoint subspaces created by a model’s partitions defines its topol-

ogy. The computation time and memory needed to compute the model is a function of the

topology’s overall size and ‘complexity.’

The size of the finest disjoint subspaces in each dimension defines the model’s grain. The

outcomes of the model, θ and so λ, are at the level of the grain. So, tallying thetas and

lambdas to any higher level of aggregation involves aggregating disjoint spaces and produces

consistent inference. For instance, if the grain in the time dimension is days and the region

dimension is zip5, then the lambdas can be aggregated to create forecasts for weeks and zip2,

year and nationwide, et cetera.

9This is guaranteed by construction if each partition’s categories pertain to disjoint parts of its dimen-
sion(s).
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2.6 Extending the Model: Families

An extension to the base model adds hierarchical priors. In this extension, priors have a

family, f , which belongs to one of three types.

The base model, described in the Bayesian model section, uses type 1 families. It has two

levels: Poisson-distributed lambdas on top given by equations ?? and 2, with Gibbs-sampled

conditional gamma distributed thetas given by equation 6 in the level below. The priors for

the conditional gamma distribution are provided by the user as hyperparameters.

With type 2 and 3 families, the model adds a third level to the hierarchy. Priors for the

conditional gamma are learned from the data, and the user provides hyperparameters for

one or two normal distributions, from which these priors are sampled in a new bottom level.

The hyperparameters are means and variances for w and z, which are transformations of α

and β. w is the log mean of the Gamma distribution, log(α
β
), and z is the log coefficient of

variation, the standard deviation divided by the mean, −1
2

log(α).

We use a hybrid Gaussian random walk proposal distribution in a Metropolis-Hastings

algorithm to sample for α and β (or equivalently for w and z). Specifically, we draw new

parameters from a (multivariate) normal distribution, where the mean is the parameter value

from the previous step in the Markov chain. When the log conditional posterior kernel is

concave, the Gaussian variance is computed from the (second derivitive of the) kernel. When

the log conditional posterior kernel is not concave, we instead use the prior(s) (i.e., σ for

type 2, and σ, τ for type 3) for the Gaussian variance.

2.6.1 Type 2 Families

For a type 2 family, the user provides a mean, µ, and variance, σ, for just z:

p(z|µ, σ) =
1

σ
√

2π
e−

1
2( z−−µσ )

2

(8)

The model then forces the mean of the gamma distribution equal to one (i.e., α
β

= 1 =⇒
α = β). Provided that the thetas for type 2 families are then excluded from the computation

of the lambdas, or equivalently if each θ = 1, the posterior distribution is a negative binomial

with mean λ and variance λ · (λ+α
α

):
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p(u|λ) ∼ NB

(
α,
λ+ α

λ

)
(9)

The log conditional posterior kernel for a type 2 family is then:

k =
∑
n

(∑
u · log θ − (

∑ λ

θ
) · θ

)
+∑

(α · logα− log Γ(α) + (α− 1) · log θ − αθ) +

− (z − µ)2

2σ2
(10)

2.6.2 Type 3 Families

For type 3 families, the user provides means, ν and µ, and variances, τ and σ, for both w

and z. p(z|µ, σ) is as in equation 8 and p(w|ν, τ) is:

p(w|ν, τ) =
1

τ
√

2π
e−

1
2(w−ντ )

2

(11)

The log conditional posterior kernel for a type 3 family is then:

k =
∑
n

(∑
u · log θ − (

∑ λ

θ
) · θ

)
+∑

(α · log β − log Γ(α) + (α− 1) · log θ − βθ) +

−
(

(w − ν)2

2τ 2
+

(z − µ)2

2σ2

)
(12)

Type 3 families allow the model to include random walks with drift and other advanced

functionality.

3 Implementating the Model

The CatFish model is available in software from:
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• The CatFish webpage: https://www.petabyteeconomics.com/catfish.html

• GitHub: https://github.com/petabyteeconomics/CatFish

This software has three parts: i) building the topology, ii) parameter inference, and

iii) using the inferred parameters to produce forecasts and conduct analysis. The software

has been written in MATLAB, as this is the most commonly used language by Bayesian

econometricians. However, the software design is object-oriented, language agnostic, and

tailored towards big data.

Parts (i) and (iii) of the software are essentially sequences of dataframe transformations,

which can be done in SQL databases or Spark-based environments. The MATLAB code

stores this data as tables, which can be imported and exported to parquet files, tab or

comma delimited text files, or through ODBC/JDBC interfaces.

Parameter inference – part (ii) of the software – currently uses vector-based in-memory

storage and transformations for efficiency.10 These vectors can use single, double, or tensorfloat-

32 precision values, suitable for GPU processing. The vectors and methods used in the

software are widely supported, including Python’s numpy library.

3.1 Building the Topology

Figure 1 shows the process for building a topology consisting of dimensions, partitions,

blocks, and families. The data is stored in tables (shown in grey). The input stream in the

top third of the diagram shows data imported from either files or functions. The lower third

of the diagram shows tables generated from transformations, which can be exported as files.

3.1.1 Startup Cities Example

The script Example1.m builds a three-dimensional model inferring the demand for new

venture capital financing in 198 U.S. “Startup Cities” for three industries (IT, life sciences,

and non-high-tech) for 45 years from 1981 to 2025. It uses categorical variables (i.e., fixed

effects) for cities, industries, state-decade interactions, quantity and quality of anchor funds

10This choice inherently limits the model’s maximum size but makes it fast and flexible for research and
development. However, parameter inference does not need to be vector-based and can use Spark Scala or
other big data languages and environments for production systems.
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Figure 1: Topology build process with associated data tables (grey)

(if any) present in a city-year, and a five-year growth trend. It has a forecast date of 2020,

so there are 40 years of training data and a five-year forecast period.

In this section, we describe how to build the topology using the Startup Cities model

as an example. Table 1 shows three dimensions’ l ↔ e tables (referred to as l2e tables in

diagrams and code), which map labels, ld to indices, ed, and vice versa.11 The indices and

training indicators, td, in these tables can be generated in software if not provided in the data

– the model and software support demarking any subsets of any dimensions as training or

forecast. However, for simplicity, the software provides a method for marking indices ahead

of some cutoff point (in one or more dimensions) as forecast data. This method is often used

to set a forecast date (FCD in code) in the time dimension. The dimensions are numbered

d = {1, . . . , D} in the order that they are loaded.

Table 2 shows three example partitions’ l→ c tables. Like dimensions, partitions can be

loaded from data or generated by functions and numbered in the order they are loaded. Table

11The arrows in the table names show the typical direction of lookups. The l↔ e table is used to look up
labels from indices and vice versa. Some tables, including the l ↔ e table, also include other variables, and
subscripts are suppressed in table names.
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Table 1: Three example dimension tables

l1 (City) e1 t1 l2 (Industry) e2 t2 l3 (Year) e3 t3

Addison, TX 1 1 Information Technology 1 1 1981 1 1
Alameda, CA 2 1 Medical/Health/Life Science 2 1 1982 2 1
Albuquerque, NM 3 1 Non-High Technology 3 1 1983 3 1
. . . . . . . . . . . . . . . . . .
Wilmington, DE 196 1 2018 38 0
Wilmington, MA 197 1 2019 39 0
Woburn, MA 198 1 2020 40 0

2 shows the 5th, 6th, and 8th partitions. The 5th and 8th partitions use a single dimension

(industry: d = 2, and time: d = 3, respectively) and so have only one label column. The 6th

partition uses two dimensions (d = 1 and d = 3) and so has two label columns.

The 5th partition divides the time dimension, which is in years, into decades. The 6th

partition assigns city-years that have “anchor funds” to one of 4 categories, depending on

how many they have and their quality. City-years without an anchor fund are not assigned

to a category. The 8th partition is degenerate; it assigns all dimension labels to a single

category value (i.e., 1).

In general, there is no need for partitions to cover dimensions fully, and the software

provides methods to ‘normalize’ partitions by removing a category. Degenerate and complete

partitions are exceptions; they must fully cover the dimension. Complete partitions assign

each label to a unique value. Each of the dimension tables in Table 1 could be used as a

complete partition by declaring the index as the category number.

Partitions’ categories must bear upon disjoint spaces. For instance, one cannot have a

partition that simultaneously divides the time dimension into days of the week and holiday

days, as holiday days fall on days of the week. In some cases, users may wish to create

complicated variables that overlap, requiring separate partitions and so blocks. A leading

example concerns “scale” (also called “cascade”) factors. Scale factors can be used to create

growth trends and (with type 3 families) random walks with drift.

The Startup Cities example includes a scale factor that changes the level of the forecast

every five years. It has one category (in partition 9 and block 6) covering every five-year

period from 1986 to 2025, another (in partition 10 and block 7) covering 1991 to 2025, and so

c©Petabyte Economics Corp., 2024. 14 All Rights Reserved.



Table 2: Three example partitions

p = 5 (Decade) p = 6 (Fund Quartile) p = 8 (Degenerate)

l3 c3 l1 l3 c1×3 l2 (Industry) c2

1981 1 Alexandria, VA 1987 1 Information Technology 1
1982 1 Alexandria, VA 1988 1 Medical/Health/Life Science 1
1983 1 Alexandria, VA 1989 1 Non-High Technology 1
. . . . . . . . . . . . . . .
2018 4 Wellesley, MA 2016 3
2019 4 Wellesley, MA 2017 2
2020 5 Wellesley, MA 2018 2

on, with the last one (in partition 15 and block 13) covering 2021 to 2025. Table 3 provides

a stylized depiction of this factor. The effect of the n th factor of this scale variable then is

the sum of the effects of the first n categories. However, to ensure disjointness, each of the

n categories is in a different partition and block.

Table 3: Example of a “scale” factor using multiple partitions and blocks

period 1 period 2 period 3 period 4

p and b 1 1 1 1
p+ 1 and b+ 1 1 1 1
p+ 2 and b+ 2 1 1
p+ 3 and b+ 3 1

Raw partition data can contain labels not appearing in the dimension tables. Partitions

are inner-joined with their dimension tables using the labels to create c ↔ e tables (not

shown to save space).12

A block’s Categories (uppercase), C, is a sequential numeric labeling of the cartesian

product of partitions’ categories (lowercase), cd, across all dimensions: C = {c1×c2×. . . cD}.
The C → c table for block 5 is shown in table 4. Degenerate blocks are used to cover

dimensions that do not interact with other partitions. For example, to make the “Anchor

Fund” block (b = 5), interact the anchor fund partition (p = 6), which is defined in terms

of dimensions 1 and 3, with a degenerate partition that covers dimension 2 (i.e., p = 8,

12This allows greater reuse of partition tables: Dimensions restrict partitions to the topology’s space.
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shown in Table 2). Note that most C → c tables are made from the cartesian product of D

partitions, as most partitions divide up a single dimension.

Table 4: An example block’s (b = 5) C → c table

b = 5 (Anchor Fund)

C c1×3 c2

1 1 1
2 2 1
3 3 1
4 4 1

Inner joining block Category definitions inherent in C → c tables to partitions’ c ↔ e

tables creates C ↔ e tables. C ↔ e tables are then used to create C ↔ E vectors and

their refinements, C2E Gibbs In-sample and C2E Metro In-sample, which are used in the

inference process described in the next section. Examples are shown in Table 5.

Table 5: Example C ↔ e tables and C ↔ E vectors for block 5

C2e (Table) C2E (Vector) C2E Gibbs In-sample

C e1 e2 e3 C C E

1 4 1 7 0 1 3568
1 4 2 7 . . . 1 3766
1 4 3 7 1 1 3964
. . . . . . . . . . . . 0 . . . . . .
2 190 1 38 2 2 22168
2 190 2 38 . . . 2 22366
2 190 3 38 0 2 22564

E is the linear vector equivalent of {e1×e2× . . . eD}, so each combination of dimensional

indices maps to a location in a vector that is 26,730 (i.e., 198×3×45) long. Put another way,

each C ↔ e table is also a C ↔ E vector of length 26,730 with C = 0 where no Category

applies. Moreover, not all C are necessarily Gibbs or metropolis sampled, and not all E (and

so C) are in-sample. Accordingly, we can create two vectors (or equivalently a two-column

table) for “C2E Gibbs In-sample”: one for the non-zero C and another for the E where they
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apply in-sample. Likewise, for metropolis sampled C. Such vectors are the same length and

generally much shorter than the length of E.13

The topology is completed by specifying the priors for each family and assigning the

families to blocks’ Categories in C → f tables. Note that for type 1 families the priors are,

α and β, whereas for type 2 families they are, µ and σ, and for type 3 families they are ν,

µ, τ , and σ. Table 6 provides an example.

Table 6: Example priors and C → f table

Priors (Input) C2f (Table)

f type p1 p2 p3 p4 b C f

1 1 0.6 0.6 5 1 1
2 1 1.25 1.25 5 2 1
3 1 5 5 5 3 1
4 2 -1.7 0.5 5 4 1
5 3 0.15 0.1 -0.7 0.5

Type 1 families can only be Gibbs sampled, as they have no hierarchical priors. However,

for type 2 and 3 families, Gibbs sampling is optional. By default, type 2 families are only

metropolis sampled – so they can be used to transform mixed Poisson distributions to mixed

negative binomials – and type 3 families are both metropolis and Gibbs sampled. These

defaults can be overridden in the code.

The topology is then recorded in two tables stored at the model level: “gibbs” and

“metro”.14 These tables’ component parts (broken up by b and f , respectively) are also

stored in the blocks and families. Table 7 shows example gibbs and metro tables for blocks 5

(for Gibbs) and 6-13 (for metropolis). The theta column provides a global variable number

for each b, C combination and is zero in the metropolis table when the Category isn’t Gibbs

sampled. The ‘in’ column denotes whether a block’s Category is ever in-sample, and the

‘sch.’ column denotes whether metropolis sampling will be run when the sampler reaches

the indicated block.

13These vectors are at most 23,760 long (i.e., 198 × 3 × 40), as the training period is 40 years in the
example.

14These tables are also used to store aggregate statistics once the inference is complete.
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Table 7: Example Gibbs and Metropolis Topology Summaries

Gibbs Table Metropolis Table

theta b C in f theta b C in f sch.

345 5 1 1 1 350 6 1 1 5 1
346 5 2 1 1 351 7 1 1 5 0
347 5 3 1 1 . . . . . . . . . . . . . . . . . .
348 5 4 1 1 356 12 1 1 5 0
349 5 5 1 1 357 13 1 0 5 0

Finally, the model needs training data. This data is loaded from a file that specifies

demand (or any count variable) for each observation, where observations are identified using

dimension labels, {l1, . . . , lD}. An example is provided in Table 8. The training data does

not need to include zeros – these will be added automatically within the space E. Likewise,

rows pertaining to observations outside of the space E are ignored, allowing the same input

file to be used in multiple contexts. The variable ‘u’, reflecting the sum of demand for each

block’s category, is computed by the software and stored in the blocks’ gibbs tables and the

families’ metro tables.

Table 8: Example Observed Demand Data

City Industry Year Demand

Wellesley, MA Medical/Health/Life Science 1984 1
Santa Monica, CA Information Technology 2004 2
Broomfield, CO Non-High Technology 1991 1
. . . . . . . . . . . .
Chicago, IL Information Technology 2015 23
Burlingame, CA Medical/Health/Life Science 2014 1
Burlingame, CA Information Technology 1995 2

3.2 Parameter Inference

Once the topology has been built, the inference is straightforward: For each chain m ∈ M ,

for each iteration r ∈ R, metropolis sample each applicable family, and then Gibbs sample
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each applicable block. The inference procedure is shown in a swimlane diagram in Figure 2.

The first two processing steps in the model swimlane – “build the sampling reference

tables” and “build linear C2E, restrict to Gibbs & in-sample” – were described in the previous

section. The initialization step draws α and β from priors for each family, f , draws each θ

from a Gamma distribution using the appropriate priors, and computes λ using the blocks’

C2E Gibbs In-Sample vectors and appropriate thetas.15 The sampling then follows the

procedure described in section 2.4. It is convenient to cache the inferred parameters (α,

β, and θ) and λ for each of the M chains and write the parameters to storage after each

iteration.

This procedure might not infer the parameter values for some blocks’ Categories from the

training data. The omissions happen when a Category is Gibbs-sampled but not in-sample,

which is particularly common in conjunction with type 3 factors. For example, suppose that

four Categories apply to different time regimes, so that the first three are in-sample, but the

fourth regime doesn’t begin until after the forecast date. One could infer the correct α and β

from which to draw θ1, . . . , θ4 using a type 3 factor. However, there is only data to override

the priors for the first three thetas. Once the in-sample inference is complete, θ4 can be

drawn from its (endogenously determined type 3) prior. The software provides a procedure

to do R×M out-of-sample draws and record the corresponding thetas where applicable.

3.3 Producing Forecasts

The R iterations of M chains provide R×M independent samples of the infered parameters

(i.e., α,β for metropolis sampled families, and θ for Gibbs in-sample Categories). Each

sample of the inferred parameters can be projected back into a subset of the space E, using

the C ↔ E vectors, to create R × M lambda vectors, which we refer to as the lambda

ensemble. Depending on the subset of E chosen, a lambda ensemble can pertain to in-

sample, out-of-sample, or both.

There are then several methods to produce forecasts. The most common of these methods

are:

• Making one draw from each lambda in the ensemble creates an R ×M outcome en-

15We refer to both the index of each b,C and the inferred value of the corresponding parameter as theta,
depending on the context.
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Figure 2: Inference process with data tables (grey) and vectors (red)
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semble, which provides a full distribution of outcomes.

• The lambda ensemble is a mixed Poisson distribution. Users can compute quantiles or

other statistics as appropriate for their needs.

• The mean of Poisson distribution is λ, so the mean of the lambda ensemble is the mean

forecast.

• The lambda ensemble can be combined with the M ×R draws of α for type 2 families

to create mixed negative binomials.

CatFish’s forecasts can then be aggregated to any grain and used as needed, and its

inferred parameters provide meaningful insight into the determinants of your demand!
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4 Appendix

Figure 3 shows a class (in blue) diagram for the CatFish v1.0 software, along with the

primary data table (in grey) definitions.

Figure 3: CatFish v1.0 class (blue) diagram with data tables (grey)
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